• 设为首页
  • 加入收藏
  • 有机电致发光二极管在生物医学中的应用进展

    发布时间:2021-07-12 来源:未知

      摘    要:随着医疗光电产品的升级,人们对便携式医疗设备和全天候监测医学传感器的需求日益增大。得益于有机电致发光二极管(OLED)的柔性、可拉伸、轻薄、均匀辐照和贴合皮肤表面等优点,其正成为可穿戴式生物医学设备的新型光源。本文详细介绍了OLED在光动力疗法、光电容积脉搏监测、光吸收式血氧监测、光遗传学和光生物调制等领域的应用进展,充分展示了OLED在医疗光电产品中的应用潜力。为了满足临床应用对光源的需求,提高OLED发光功率及延长其寿命是未来的重要发展方向。
      
      关键词有机电致发光二极管 光动力疗法 脉搏血氧仪 光遗传学 光生物调制
      
      Organic Light-emitting Diode for Biomedicine
      
      GUO Xuan LI Buhong
      
      Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University;
      
      Abstract:The demand for portable medical equipment and all-day health monitor continues to increase with the development of the medical industry. Benefiting from the advantages such as flexibility, stretchability, light weight, uniform irradiation and jointing skin surface, organic light-emitting diodes(OLED) are becoming a new type of light source for wearable biomedical devices. In this review, recent advances of OLED in photodynamic therapy, photoplethysmography, oximeter, optogenetics, and photobiomodulation are summarized, and the potential application of OLED in wearable healthcare is highlighted. The future trends of OLED will be focused on the development of long-lived devices with high power density as the light sources for clinical applications.
      
      Keyword:organic light-emitting diode; photodynamic therapy; pulse oximeter; optogenetics; photobiomodulation;
      
      有机电致发光二极管(organic light-emitting diode,OLED)是利用功能化的有机材料,在外加电压下实现载流子迁移和复合发光的半导体器件[1]。自Tang和Vanslyke[2]首次通过蒸镀荧光材料成功制备OLED以来,有机材料、器件结构和制备工艺已得到显著改进。采用磷光材料和光萃取结构的基板,器件外量子效率(external quantum efficiency,EQE)由最初的1%提升到30%以上。在此基础上,如果采用具有水平取向的发光材料和低折射率电极,器件EQE将超过60%[3]。除了热蒸镀法,OLED还可以采用溶液法以旋涂、刮涂和喷墨打印等方式实现大规模制备,大大降低器件成本[4]。
      
      OLED所用小分子和聚合物等有机材料在成膜时形成无定形的结构[5],在反复弯曲折叠过程中不易被破坏,且功能层厚度仅为百纳米,因此OLED突出的优点是用于制备柔性器件。由于器件表面弯曲应变与厚度成正比、与曲率半径成反比,在应变许可的范围内,器件越薄弯曲曲率越大。White等[6]基于聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)柔性基板成功制备厚度仅2μm的柔性器件,器件曲率半径小至10μm,在揉皱、扭曲后仍能正常工作。Choi等[7]使用聚萘二甲酸乙二醇酯纤维编织成柔性基板,替代PET制备OLED,基板可动纤维和波浪状结构分散器件内的机械应力,使器件的柔韧性更高,在反复弯曲中更不易损坏。Yin等[8]将OLED黏附于弹性基板,经预拉伸处理,器件长度可延展至初始长度的2倍。
      
      OLED拥有连续平整的发光层,能实现均匀辐照,且基于柔性基板的器件重量小于1 g,其作为一种轻薄、柔性面光源在生物医学领域的应用正在快速发展。可穿戴OLED医疗光电产品不受地点和时间限制,为患处提供贴合组织表面且均匀的光照。如封装后的OLED作为治疗或刺激光源长期置于体内[9],或作为传感器的光源整合在绷带内用于监测伤口愈合过程[10]。本文将从光动力疗法(photodynamic therapy,PDT)、光电容积脉搏监测、光吸收式血氧监测、光遗传学和光生物调制5个方面介绍OLED在生物医学领域的应用进展。
      
      1 PDT
      
      PDT是一种联合利用光敏剂、光和氧分子,通过光动力反应选择性地治疗恶性病变和良性病变等疾病的靶向疗法[11]。光源作为PDT中的三大关键要素之一,其发射光谱与光敏剂吸收光谱的匹配程度、光功率密度和光剂量直接决定其疗效[12]。OLED发射波长分布在可见光及800~1 000 nm的近红外波段[13],覆盖常用光敏剂600~700 nm的多重吸收峰[14]。可穿戴式OLED面光源产生贴合患处的均匀辐照,便于调节功率密度和辐照时长。相比价格昂贵、体积庞大的固体激光器,OLED作为治疗光源更轻便灵活[15-16];相比同为便携式光源的无机发光二极管(light-emitting diode,LED),OLED能有效散热,减小器件内高电流密度导致的局部升温,无需搭配使用棱镜、扩散板、光纤织物即可产生均匀辐照[17]。轻便、可穿戴OLED已成为PDT的新型光源[18]。
      
      表1列举了OLED在PDT中的应用。Lian等[19]制备带有微腔效应的器件,如图1a所示,通过改变空穴传输层(hole transport layer,HTL)厚度,在669~737 nm范围内调控器件发光峰,以匹配具有不同吸收光谱的光敏剂。选择亚甲基蓝(methylene blue,MB)作为光敏剂,基于柔性OLED的PDT杀死超过99%的金黄色葡萄球菌(Staphylococcus aureus)。如图1b所示,Jeon等[20]制备了柔性并联叠层式OLED,器件发光峰位于660 nm,在35 m W/cm2的功率密度下可稳定运行100 h,器件的最大功率密度超过100 m W/cm2,具有实用价值。配合氟硼二吡咯(boron dipyrromethene,BODIPY)作为光敏剂,基于该器件的PDT能有效减少黑素瘤细胞活力。Guo等[21]将发光波长为626 nm的OLED应用于治疗患有胶质母细胞瘤的小鼠,选用5-氨基乙酰丙酸(5-aminolevulinic acid,ALA)作为光敏剂,辐照光源功率密度为3 m W/cm2,经过3.7 h治疗,治疗组小鼠的平均寿命(40.5 d)明显长于未接受治疗的对照组(26.0 d)。Attili等[22]将OLED应用于非黑色素瘤皮肤癌的治疗,患处经表面清理后敷上ALA软膏,待药物渗透后实施功率密度为5 m W/cm2、时长为3 h的红光照射,该治疗过程大大减轻了传统PDT的疼痛感,且约60%的患者在1年后回访中没有复发。
      
      2 光电容积脉搏波监测
      
      非侵入性传感器被广泛应用于患者的健康检测,其中全天候监测的穿戴器件长期提供患者的生理信息,对患者的术后恢复以及精神系统疾病、药物成瘾的治愈十分重要[23-25]。脉搏信号作为常用医学信号,是血管内血流量随心脏搏动呈现周期性变化的体现。由于血液组织对入射光的吸收随血流量变化,心动周期可以通过使用光电探测器非侵入地测量经血液组织作用的入射光推断得到,测得的周期性变化光能曲线,被称为光电容积脉搏波(photoplethysmography,PPG)。如图2a和2b所示,PPG测量方式分为测量光源发出后透过组织的光(透射式测量)和经组织反射的光(反射式测量)[26]。
      
      表1 OLED在光动力疗法中的应用
      
      图1 用于PDT的OLED
      
      由于人体表面多为曲面,相比于刚性的无机LED监测器件,基于OLED和有机光电二极管(organic photodiode,OPD)的柔性反射式器件具有贴合皮肤表面、佩戴舒适、低功耗和适用于身体各处等优点,有利于减小周围环境变化和器件相对于皮肤组织位移对PPG信号的影响,实现全天候稳定医学信号监测[10]。如图2c所示,Elsamnah等[27]制备由环形OLED包围圆形OPD和环形OPD包围圆形OLED的两种反射式脉搏探测器,用于监测手指、手腕、前臂和前额等部位的脉搏信号,其中基于圆形OLED的器件最低功耗仅0.1 m W。该研究组在后续试验中进一步优化器件结构,如图2d所示,调整中心圆形OLED面积和OLED与OPD的间距后,器件最低功耗仅8μW,有望降低全天候脉搏计对电池容量的要求[28]。
      
      图2 基于OLED的脉搏计
      
      3 光吸收式血氧监测
      
      血液中存在氧合血红蛋白(oxyhemoglobin,Hb O2)和脱氧血红蛋白(deoxyhemoglobin,Hb)。血氧饱和度为Hb O2占总血红蛋白的比例,直接表征个体的身体健康状况,对血氧的持续监测有望得到与其他症状或身体状况间的潜在关联[29]。光吸收式血氧仪工作原理与PPG测量类似,由光电二极管测得经血液组织作用的光强,计算经皮血氧饱和度(peripheral oxygen saturation,Sp O2)[30]。由于Hb O2和Hb的消光系数曲线在可见光至近红外波段有较大区别,测量两个不同波段的信号光即可计算Sp O2。根据Hb O2和Hb的消光系数在不同波长下的比值,人们通常选择绿光和红光,或者是红光和红外光光源用于血氧监测仪。
      
      柔性OLED血氧仪贴合皮肤表面,有效减少环境光的工频干扰和测量部位相对位移导致的混频运动干扰,达到了与商用激光多普勒血流仪相当的精确度,同时更不容易受肢体运动和体表曲率所影响[31]。优化OLED血氧监测仪(图3),包括器件结构的设计[32-33]、快速的器件制备[34-35]以及长时间穿戴的柔性器件[36-37]等成为未来的重要研究方向。Lee等[33]将血氧仪中的OPD设计成8字形,两个圆环分别包围红光和绿光的OLED,仅消耗数十微瓦的电功率即可完成身体各处血氧含量的测量。Han等[35]采用刮涂法同时制备两种不同颜色的聚合物OLED,加快了整体器件的制备效率。Yokota等[37]成功制备厚度仅3µm的柔性器件,像皮肤一样贴合手背和脸颊等不同部位,并在同一基板上制备柔性血氧监测仪和柔性显示器,有望同步显示监测结果。除了单点血氧监测,复数OLED光源及光电探测器共同组成的大面积柔性血氧仪阵列提供的皮肤表面血氧分布图,在定量评估组织损伤和监测皮肤移植后的恢复过程中具有潜在的应用[38]。
      
      图3 基于OLED的血氧监测仪[32]
      
      4 光遗传学
      
      光遗传学是利用光对特定转基因细胞进行刺激,通过人为地激发、抑制或者控制信号传导途径对细胞进行调控[39],有助于对抑郁症等精神或神经疾病开展深入研究和有效治疗[40-41]。在光遗传学刺激光源的选取中,得益于快速开关、器件轻薄等优点,OLED成为除卤素灯、激光和无机LED外的新型光源[42-43]。
      
      OLED光遗传学细胞试验包括:使用阳离子指示剂[44]、微电极阵列[45]和膜片钳[46]等手段研究光敏基因表达的目标神经元在光照下跨膜电位去极化过程;使用OLED阵列控制绿藻运动[47-48]。Morton等[44]对引入钙指示剂Che Riff的神经元施加OLED蓝光照射,神经元去极化后指示剂的红色荧光显著增强。如图4所示,Matarèse等[46]使用频率为10 k Hz的方波信号驱动的OLED激活神经元细胞Chrimson R视蛋白表达,利用膜片钳成功测量光激发与细胞动作电位间毫秒量级的时间差。Steude等[49]制备单个器件仅6μm×9μm、共320×720个独立操作的蓝光OLED阵列,高分辨OLED阵列通过点亮个别像素点激活单个通道视紫红质蛋白-2(channelrhodopsin-2,Ch R2)表达的人胚肾细胞。同时,他们还利用该OLED阵列验证了通道视紫红质蛋白表达的莱茵衣藻的趋光性,实现了对绿藻运动的控制[50]。
      
      OLED光遗传学活体试验为:对转入Ch R2的转基因果蝇幼虫[51-53]和小鼠[45,54]等活体动物施加光刺激,在激发目标神经元的动作电位后,观察、记录并分析试验动物的反应,建立光刺激与特定反应间的联系。Morton等[52]制备蓝、绿、橙三色OLED,激发Ch R2(H134R)第三龄转基因果蝇幼虫体内神经元的动作电位(图5a),在蓝、绿、橙光分别刺激下,果蝇幼虫肌肉收缩程度与Ch R2(H134R)响应光谱一致。Murawski等[53]制备一列宽度和间距均仅为100μm的蓝光OLED,如图5b所示,单个器件光照宽度小于果蝇幼虫的单个腹部节宽度,实现了对Cs Chrimson、Gt ACR2转基因果蝇幼虫单个腹部节的控制,通过依次点亮OLED列上相邻各器件控制果蝇幼虫爬行过程。Kim等[54]制备厚度仅2μm的柔性蓝光OLED,贴附在W-TCh R2V4转基因鼠的股薄肌表面,控制小鼠后肢发生与刺激光频率一致的颤动。同时,该研究组发现由于OLED具有超薄和非磁性的特点,在磁共振成像(magnetic resonance imaging,MRI)过程中不造成伪影,将OLED与MRI共同使用,有望深入研究脑部神经组织在光刺激下的响应。现阶段光遗传学试验多采用蓝光OLED作为刺激光源,为增加刺激光在生物组织内的穿透深度和减小光诱导细胞损伤,应采用Chrimson和嗜盐细菌视紫红质蛋白等吸收峰波长较长的光敏蛋白,或上转换纳米粒子辅助的光遗传学系统,以黄光至近红外光OLED作为光源开展光遗传学试验[55]。
      
      图4 同步光激发与膜片钳记录示意图[46]
      
      5 光生物调制
      
      光与细胞内的单种或多种发色团相互作用,可以激活或抑制细胞功能,如红光或近红外光对线粒体呼吸链末端酶的激活导致腺嘌呤核苷三磷酸(adenosine triphosphate,ATP)产量增加、细胞代谢活化和增殖[56]。660 nm波长的辐照有助于加速糖尿病患者伤口纤维原细胞的增殖、扩散和迁移等愈合过程[57]。由于OLED轻薄、柔性的优点,将集成有红光OLED和柔性电池的贴片或绷带贴附于伤口表面,提供均匀的红光辐照以加速伤口愈合,已经成为光生物调制器件(photobiomodulation,PBM)的新兴研究方向[58]。
      
      表2列举了基于OLED的伤口治疗PBM。Jeon等[59]制备带有红光OLED的PBM贴片,器件重量仅0.82 g,厚度仅676μm,在初始功率密度超过6.4 m W/cm2的情况下,器件连续工作300 h,功率密度下降仅70%。经过5 m W/cm2的红光照射10 min后,人类纤维母细胞在24 h培养内相对于未经照射的对照组出现明显的细胞迁移。如图6所示,Jeon等[60]制备了厚度仅10μm的红光OLED用于加快角质细胞的增殖和迁移,器件贴合纺织品和皮肤表面,经1 000次折叠后效率不变,器件内的封装层有效阻隔水氧入侵,经水洗后仍正常工作。Wu等[61]将基于OLED的PBM应用于转基因糖尿病小鼠伤口治疗,光照增强了伤口愈合初始阶段巨噬细胞的活性,在红光OLED光剂量为5 J/cm2、连续5 d的光照治疗下,伤口闭合的百分比为(40.94±3.49)%,相对于未接受治疗的对照组(25.03±5.29)%显著提高。
      
      6 总结与展望
      
      随着有机半导体材料的研究发展和器件结构优化,OLED已广泛应用在生物医学领域。在PDT中,OLED不受时间地点限制,为患者提供均匀、贴合患处的治疗光,是理想的可穿戴PDT光源;在医学传感器中,基于OLED的柔性脉搏血氧监测器功率低至微瓦量级,反射式器件准确测得指尖、手背和脸颊等不同部位的血氧含量,柔性OLED血氧仪阵列提供身体表面血氧分布图;在光遗传学中,OLED作为光源快速点亮、熄灭有助于研究毫秒尺度的光遗传学过程,微米级别的照明区域控制单个细胞激活;在PBM中,集成OLED的护理贴片重量不足1 g,红光照射有助于伤口愈合。
      
      得益于柔性、均匀辐照、贴合组织表面等优点,将OLED作为小型化光源应用于医学检测和疾病治疗已成为重要发展方向。但是,OLED还存在最大功率密度相对较低、器件EQE和寿命随功率增大而减小等不足,在一定程度上限制了光治疗等需要较高光功率密度的临床应用。为了更好地满足临床应用对光源的要求,OLED可采用叠层器件结构提高最大功率密度;另外,开发热致延迟荧光材料等新型有机材料,以减小器件高亮度下三线态激子浓度,进而避免EQE在高功率时的严重滚降[62];再者,通过提升器件封装层的水氧阻隔性能,以延长器件寿命。
      
      参考文献
      
      [1] SONG J, LEE H, JEONG E G, et al. Organic light-emitting diodes:pushing toward the limits and beyond[J]. Advanced Materials, 2020, 32(35):e1907539.
      
      [2] TANG C W, VANSLYKE S A. Organic electroluminescent diodes[J]. Applied Physics Letters, 1987, 51(12):913-915.
      
      [3] LU C Y, JIAO M, LEE W K, et al. Achieving above 60%external quantum efficiency in organic light-emitting devices using ITOfree low-index transparent electrode and emitters with preferential horizontal emitting dipoles[J]. Advanced Functional Materials,2016, 26(19):3250-3258.
      
      [4] LIU Y F, FENG J, BI Y G, et al. Recent developments in flexible organic light-emitting devices[J]. Advanced Materials Technologies, 2019, 4(1):1800371.
      
      [5] BURROUGHES J H, BRADLEY D C, BROWN A R, et al. Lightemitting diodes based on conjugated polymers[J]. Nature, 1990,347(6293):539-541.
      
      [6] WHITE M S, KALTENBRUNNER M, GŁOWACKI E D, et al.Ultrathin, highly flexible and stretchable PLEDs[J]. Nature Photonics, 2013, 7(10):811-816.
      
      [7] CHOI S, KWON S, KIM H, et al. Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays[J]. Scientific Reports, 2017, 7(1):6424.
      
      [8] YIN D, FENG J, MA R, et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process[J]. Nature Communications, 2016, 7:11573.
      
      [9] SMITH J T, O’BRIEN B, LEE Y K, et al. Application of flexible OLED display technology for electro-optical stimulation and/or silencing of neural activity[J]. Journal of Display Technology,2014, 10(6):514-520.
      
      [10] KOETSE M, RENSING P, VAN HECK G, et al. In plane optical sensor based on organic electronic devices[C]//Proceedings Volume7054, Organic Field-Effect Transistors VII and Organic Semiconductors in Sensors and Bioelectronics. San Diego:SPIE, 2008:70541I.
      
      [11] LI B H, LIN L S, LIN H Y, et al. Photosensitized singlet oxygen generation and detection:recent advances and future perspectives in cancer photodynamic therapy[J]. Journal of Biophotonics,2016, 9(11/12):1314-1325.
      
      [12] LANGMACK K, MEHTA R, TWYMAN P, et al. Topical photodynamic therapy at low fluence rates-theory and practice[J]. Journal of Photochemistry and Photobiology:B, Biology, 2001, 60(1):37-43.
      
      [13] ZAMPETTI A, MINOTTO A, CACIALLI F. Near-infrared(NIR)organic light-emitting diodes(OLEDs):challenges and opportunities[J]. Advanced Functional Materials, 2019, 29(21):1807623.
      
      [14] KIM M M, DARAFSHEH A. Light sources and dosimetry techniques for photodynamic therapy[J]. Photochemistry and Photobiology, 2020, 96(2):280-294.
      
      [15] SCHWARTZ G, TEE B C K, MEI J G, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring[J]. Nature Communications,2013, 4:1859.
      
      [16] CHOI S, PARK J, HYUN W, et al. Stretchable heater using ligandexchanged silver nanowire nanocomposite for wearable articular thermotherapy[J]. ACS Nano, 2015, 9(6):6626-6633.
      
      [17] MOSELEY H, ALLEN J W, IBBOTSON S, et al. Ambulatory photodynamic therapy:a new concept in delivering photodynamic therapy[J]. The British Journal of Dermatology, 2006, 154(4):747-750.
      
      [18] EVANS J. High-tech bandages lighten the load of light therapy[J].Nature Medicine, 2009, 15(7):713.
      
      [19] LIAN C, PIKSA M, YOSHIDA K, et al. Flexible organic lightemitting diodes for antimicrobial photodynamic therapy[J]. NPJ Flexible Electronics, 2019, 3(1):1-6.
      
      [20] JEON Y, NOH I, SEO Y C, et al. Parallel-stacked flexible organic light-emitting diodes for wearable photodynamic therapeutics and color-tunable optoelectronics[J]. ACS Nano, 2020, 14(11):15688-15699.
      
      [21] GUO H W, LIN L T, CHEN P H, et al. Low-fluence rate, long duration photodynamic therapy in glioma mouse model using organic light emitting diode(OLED)[J]. Photodiagnosis and Photodynamic Therapy, 2015, 12(3):504-510.
      
      [22] ATTILI S K, LESAR A, MCNEILL A, et al. An open pilot study of ambulatory photodynamic therapy using a wearable low-irradiance organic light-emitting diode light source in the treatment of nonmelanoma skin cancer[J]. The British Journal of Dermatology, 2009, 161(1):170-173.
      
      [23] ERICSON M N, WILSON M A, COTÉG L, et al. Implantable sensor for blood flow monitoring after transplant surgery[J]. Minimally Invasive Therapy&Allied Technologies, 2004, 13(2):87-94.
      
      [24] BONATO P. Advances in wearable technology and applications in physical medicine and rehabilitation[J]. Journal of Neuroengineering and Rehabilitation, 2005, 2(1):2.
      
      [25] NÍSCANAILL C, CAREW S, BARRALON P, et al. A review of approaches to mobility telemonitoring of the elderly in their living environment[J]. Annals of Biomedical Engineering, 2006, 34(4):547-563.
      
      [26] SMITH J, BAWOLEK E, LEE Y K, et al. Application of flexible flat panel display technology to wearable biomedical devices[J].Electronics Letters, 2015, 51(17):1312-1314.
      
      [27] ELSAMNAH F, BILGAIYAN A, AFFIQ M, et al. Comparative design study for power reduction in organic optoelectronic pulse meter sensor[J]. Biosensors, 2019, 9(2):48.
      
      [28] ELSAMNAH F, BILGAIYAN A, AFFIQ M, et al. Reflectancebased organic pulse meter sensor for wireless monitoring of photoplethysmogram signal[J]. Biosensors, 2019, 9(3):87.
      
      [29] ALLEN J. Photoplethysmography and its application in clinical physiological measurement[J]. Physiological Measurement,2007, 28(3):R1-39.
      
      [30] LEE Y, LEE H, JANG J, et al. Sticker-type hybrid photoplethysmogram monitoring system integrating cmos ic with organic optical sensors[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2017, 7(1):50-59.
      
      [31] LIM C J, LEE S, KIM J H, et al. Wearable, luminescent oxygen sensor for transcutaneous oxygen monitoring[J]. ACS Applied Materials&Interfaces, 2018, 10(48):41026-41034.
      
      [32] KHAN Y, HAN D, TING J, et al. Organic multi-channel optoelectronic sensors for wearable health monitoring[J]. IEEE Access,2019, 7:128114-128124.
      
      [33] LEE H, KIM E, LEE Y, et al. Toward all-day wearable health monitoring:an ultralow-power, reflective organic pulse oximetry sensing patch[J]. Science Advances, 2018, 4(11):eaas9530.
      
      [34] LOCHNER C M, KHAN Y, PIERRE A, et al. All-organic optoelectronic sensor for pulse oximetry[J]. Nature Communications,2014, 5(1):5745.
      
      [35] HAN D, KHAN Y, TING J, et al. Flexible blade-coated multicolor polymer light-emitting diodes for optoelectronic sensors[J]. Advanced Materials, 2017, 29(22):1606206.
      
      [36] BANSAL A K, HOU S, KULYK O, et al. Wearable organic optoelectronic sensors for medicine[J]. Advanced Materials, 2015,27(46):7638-7644.
      
      [37] YOKOTA T, ZALAR P, KALTENBRUNNER M, et al. Ultraflexible organic photonic skin[J]. Science Advances, 2016, 2(4):e1501856.
      
      [38] KHAN Y, HAN D, PIERRE A, et al. A flexible organic reflectance oximeter array[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(47):E11015-E11024.
      
      [39] MIESENBÖCK G. Optogenetic control of cells and circuits[J].Annual Review of Cell and Developmental Biology, 2011, 27(1):731-758.
      
      [40] DEISSEROTH K. Controlling the brain with light[J]. Scientific American, 2010, 303(5):48-55.
      
      [41] VANN K T, XIONG Z G. Optogenetics for neurodegenerative diseases[J]. International Journal of Physiology, Pathophysiology and Pharmacology, 2016, 8(1):1-8.
      
      [42] PACKER A M, ROSKA B, HÄUSSER M. Targeting neurons and photons for optogenetics[J]. Nature Neuroscience, 2013, 16(7):805-815.
      
      [43] KALE R P, KOUZANI A Z, WALDER K, et al. Evolution of optogenetic microdevices[J]. Neurophotonics, 2015, 2(3):031206.
      
      [44] MORTON A, MURAWSKI C, DENG Y L, et al. Photostimulation for in vitro optogenetics with high-power blue organic light-emitting diodes[J]. Advanced Biosystems, 2019, 3(3):e1800290.
      
      [45] SRIDHARAN A, SHAH A, KUMAR S S, et al. Optogenetic modulation of cortical neurons using organic light emitting diodes(OLEDs)[J]. Biomedical Physics&Engineering Express, 2020,6(2):025003.
      
      [46] MATARÈSE B F E, FEYEN P L C, DE MELLO J C, et al. Sub-millisecond control of neuronal firing by organic light-emitting diodes[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7:278.
      
      [47] GATHER M C. OLED microdisplays control cell behavior through optogenetics[J]. SID Symposium Digest of Technical Papers,2016, 47(1):699-702.
      
      [48] STEUDE A, GATHER M C. OLED microdisplays as biophotonics platform[C]//Proceedings of the Frontiers in Optics 2014. Tucson:Optical Society of America, 2014:FTh2B.4.
      
      [49] STEUDE A, WITTS E C, MILES G B, et al. Arrays of microscopic organic LEDs for high-resolution optogenetics[J]. Science Advances, 2016, 2(5):e1600061.
      
      [50] STEUDE A, JAHNEL M, THOMSCHKE M, et al. Controlling the behavior of single live cells with high density arrays of microscopic OLEDs[J]. Advanced Materials, 2015, 27(46):7657-7661.
      
      [51] MURAWSKI C, MORTON A, SAMUEL I D W, et al. Organic light-emitting diodes for optogenetic stimulation of Drosophila larvae[C]//Proceedings of the Optics and Photonics for Energy and the Environment 2016. Leipzig:Optical Society of America,2016:JW4A.9.
      
      [52] MORTON A, MURAWSKI C, PULVER S R, et al. High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviourr[J]. Scientific Reports, 2016, 6:31117.
      
      [53] MURAWSKI C, PULVER S R, GATHER M C. Segment-specific optogenetic stimulation in Drosophila melanogaster with linear arrays of organic light-emitting diodes[J]. Nature Communications, 2020, 11(1):6248.
      
      [54] KIM D, YOKOTA T, SUZUKI T, et al. Ultraflexible organic lightemitting diodes for optogenetic nerve stimulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(35):21138-21146.
      
      [55] WANG Z M, HU M, AI X Z, et al. Near-infrared manipulation of membrane ion channels via upconversion optogenetics[J]. Advanced Biosystems, 2019, 3(1):e1800233.
      
      [56] KARU T I. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation[J]. Photochemistry and Photobiology, 2008, 84(5):1091-1099.
      
      [57] HOURELD N N, MASHA R T, ABRAHAMSE H. Low-intensity laser irradiation at 660 nm stimulates cytochrome c oxidase in stressed fibroblast cells[J]. Lasers in Surgery and Medicine,2012, 44(5):429-434.
      
      [58] JEON Y, CHOI H R, KWON J H, et al. 22-4:wearable photobiomodulation patch using attachable flexible organic light-emitting diodes for human keratinocyte cells[J]. SID Symposium Digest of Technical Papers, 2018, 49(1):279-282.
      
      [59] JEON Y, CHOI H R, LIM M, et al. A wearable photobiomodulation patch using a flexible red-wavelength OLED and its in vitro differential cell proliferation effects[J]. Advanced Materials Technologies, 2018, 3(5):1700391.
      
      [60] JEON Y, CHOI H R, KWON J H, et al. Sandwich-structure transferable free-form OLEDs for wearable and disposable skin wound photomedicine[J]. Light, Science&Applications, 2019, 8:114.
      
      [61] WU X J, ALBERICO S, SAIDU E, et al. Organic light emitting diode improves diabetic cutaneous wound healing in rats[J].Wound Repair and Regeneration, 2015, 23(1):104-114.
      
      [62] TANAKA H, SHIZU K, MIYAZAKI H, et al. Efficient green thermally activated delayed fluorescence(TADF)from a phenoxazinetriphenyltriazine(PXZ-TRZ)derivative[J]. Chemical Communications, 2012, 48(93):11392-11394.

    123医学期刊网 是一家期刊推荐、学术论文指导专业网站。从2008年至今,始终处于论文发展前沿,致力于论文推荐发表和指导工作,旨在为广大朋友提供便捷的论文发表渠道,帮助广大朋友顺利晋级,从而使学术成果及时得到推广,促使中国学术论文得到广泛交流。经过多年运作,目前我中心积聚了大量的外部人才和资源,可以提供从省级刊物到部分核心期刊的论文推荐发表服务。北大中文核心期 [...查看详细]

    热门期刊
    健康之家杂志 健康之家杂志

    刊名:健康之家 英文名:Care Health 主管单位:南昌日报社 主办单位:家庭医生报社 出版地:北京市 主编:杨洋 IS...[查看详细]

    健康管理杂志 健康管理杂志

    健康管理杂志基础信息: 《健康管理》杂志是由国家新闻出版总署正式批准出版的国家综合性健康管理科学普及期刊...[查看详细]

    武警医学杂志(非官网) 武警医学杂志(非官

    武警医学杂志基础信息: 《武警医学》为武警总部卫生部主办的公开发行的综合性医药卫生月刊,是中国科技论文统...[查看详细]

    航空军医杂志 航空军医杂志

    航空军医杂志基础信息: 本刊由空军后勤部卫生部主管、空军航空医学研究所主办。读者对象为全军航空卫生人员,...[查看详细]

    中华腔镜泌尿外科杂志·电 中华腔镜泌尿外科杂

    中华腔镜泌尿外科杂志电子版基础信息: 本刊是由卫生部主管,中华医学会主办,中山大学附属第三医院承办,中华...[查看详细]

    中华普通外科学文献·电子 中华普通外科学文献

    中华普通外科学文献电子版杂志基础信息: 本刊是一本由中华人民共和国卫生部主管、中华医学会主办、中山大学附...[查看详细]

    • 电话:010-82656213
    • QQ:在线咨询
    • 邮箱:在线咨询
    • 微信号:在线咨询